合肥研究院研究生因公出国(境)事后公示表

姓	名	姚智鑫	部门	等离子体所	1室			
学	号	BA19168221	在读学位	博士	出访国家 (或地区)		克罗地亚	
公示日	期	自 _2023年3月6日 至 _ 2023年3月10日						
计划。		参加第 32 届 Symposium on Fusion Technology (SOFT) 国际会议(线上会议),并在会议中以海报形式汇报最新科研成果及工作进展。						
计划日	程	2022 年 9 月 18 日-9 月 23 日参加 SOFT 2022 会议 (线上会议) 2022 年 9 月 20 日,并进行海报展示。						
计划?		线上会议, 无需出境						
邀请单介	· 位 绍	两年一度的 SOFT (Symposium on Fusion Technology) 会议是欧洲该领域最重要的 会议,汇聚了来自世界各地的科学家、工程师和行业代表,重点关注聚变实验和活 动的最新发展,为全世界的聚变界专业人士提供一个交流平台。						
费用来	源	须列出哪类经费(如:自然科学基金课题支付) 导师课题: E05A0GC65D1 安徽省极端环境机器人工程实验室						
预算组	经	国际旅费	交通费	住宿	费伙	食费	其他	
费支	出	0	0	0		0	会议注册费	
实际费 来源及 付金 ⁴	支		□课题组 <u>1900 HRK/250 欧元/1861.3 人民币</u> □学校 □国外资助单位□其他资助单位					
实际:		2022 年 9 月	18 日	实际结束	末日期 2	2022年9月23日		

实际往 返路线	线上会议, 无需出	境			
	国际旅费	交通费	住宿费	伙食费	其他
实际经 费支出	0	0	0	0	会议注册 费 1900HRK/ 250 欧元 /1861.3 人民币

实际出访单位名称及主要日程安排:

2022 年 9 月 18 日-9 月 23 日, 远程参加会议并观看主要报告;

2022 年 9 月 20 日进行题为"Toward a digital-twin for real-time heavy-load robot arm control in fusion remote handling application"的线上海报展示。

出访总结

出访主要学习、工作、生活内容、取得成果等(体裁不限,1500字以上,可另附页)

本次会议为两年一度的 SOFT(Symposium on Fusion Technology)会议,是欧洲该领域最重要的会议,汇聚了来自世界各地的科学家、工程师和行业代表,重点关注聚变实验和活动的最新发展,为全世界的聚变界专业人士提供一个交流平台。 SOFT 会议包含邀请、口头和海报演示,以及行业和研发展览,会议于 2022 年 9 月 18 日至 23 日以线下、线上的方式举办。会议的主要议题有: General Reviews for DEMO, Power Plants and Plant Systems; Experimental Devices and Facilities for Fusion Research; Plasma Heating and Current Drive; Plasma Engineering, Plasma Control, and CODAC; Diagnostics; Magnets, Cryogenics and Electrical Systems; Plasma-Facing Components; Vessel/in-vessel Engineering and Remote Handling; Fuel Cycle and Breeding Blankets; Materials Technology; Safety and Environment, Socio-economic studies and Technology Transfer; Non-magnetic fusion technologies; Industrial exhibition。我所投递的会议论文名称为"Toward a digital-twin for real-time heavy-load robot arm control in fusion remote handling application"位于 Remote Handling 议题下,并在会议上作海报展示。

本人汇报的聚变堆重载机械臂精度控制算法的进展,利用高精度的光电传感器构建数字孪生系统。数字孪生为聚变堆遥操作维护机械臂的实时控制需求提供了框架。机械臂刚柔耦合动力学仿真耗时较长。特别是在遥操作维护过程中,重载机械臂结构复杂,仿真往往需要数小时,无法实现实时控制算法。本文提出的数字孪生框架,用于研究聚变堆重载机械臂的动态性能。利用高精度的光电传感器数据和神经网络模型,实现了真实物理空间与数字虚拟空间的互联。重载机械臂的结构变形主要是由连杆和关节的柔性引起的变形。对于关节的柔性,关节内编码器的数据可以用来计算关节的变形。连杆结构复杂,常规有限元分析方法无法实时计算其变形。利用光纤应变传感器采集机器人在可用空间内的变形数据,利用变形数据训练变形模型,快速计算出机器人的变形量。利用编码器传感器和变形模型的数据构成数字孪生系统。重载机械臂操作可视化,更新频率为 2hz。数字孪生系统可在远程维护作业前给出准确的无碰撞轨迹,并可在作业过程中进行实时状态检测。

同时也聆听了 ITER 装置、DEMO 装置关于要操作维护技术的最新进展, Gioacchino Miccichè、Andrea Reale、 Janne Lyytinen 的等人的报告。报告详细介绍了聚变堆遥操作维护方案,并分享了他们团队在该领域的最新研究成果。关于报告主要包含如下几个方面:

- 1. 重载机械臂技术: 重载机械臂是聚变遥操作技术中不可或缺的一部分,可用于 维护、清理等操作。会议上,专家们分享了重载机械臂技术的最新进展,包括机 械臂的结构、控制系统、传感器等方面的优化。
- 2. 远程控制技术: 远程控制技术是聚变遥操作技术的核心之一。在会议上,专家们分享了关于远程控制技术的最新成果,包括控制系统的设计、操作界面的优化等方面的研究进展。
- 3. 其他遥操作技术:除了重载机械臂和远程控制技术之外,会议上还介绍了其他 聚变遥操作技术,如遥感技术、机器视觉技术等,这些技术可用于检测和诊断聚 变设备的运行状况。
- 4. 安全性和可靠性:聚变遥操作技术在保障聚变设备安全性和可靠性方面扮演着 重要角色。在会议上,与会者讨论了聚变遥操作技术在这方面的应用,如如何确 保机械臂操作的精准性和遥控操作的稳定性等。

这些报告深入探讨了操作维护技术的实现难点和解决方案, 以及如何应对各种不

可预见情况,	从而为聚变堆技术的进一步	发展提供了重要的指导和帮助。	
		了核聚变技术与工程的相关知识,同 国际第四、通过东京巡点的第三人	
		国际前沿。通过在会议中的学习,使 ,此次参会经历让我受益良多。同时	
题组的帮助。			7G. 944 614
H 1- 1- 1			
导师审核	导师签字:	日期: 2022.10.12	
	, , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	

签字:

日期:

公示情况: